

INORGANIC SOLIDS

Cement

Visible rays : 300 – 600 nm

Human Eyes Resolution = 0.07 mm

Pigment

SEM 100nm

Inside a solid : how the grains look

1 micron to 10 microns : Normal grains in solids 1 micron = 1/1000 mm

Ordered arrangement of atoms : crystalline solids

Diamond

Dislocation

1 atom(dia) : 0.1 – 0.2 nm 1 small crystal : ~10²¹ atoms

3-Dimensional

Entropy \rightarrow Zero

(Perfect order ---- Crystal) ΔH should be -ve $\Delta G = -ve$

Close - packed structures: fcc and hcp type ABCABC... arrangement

ABAB... arrangement

hcp

ABC ABC Cubic Close packing (ccp)

Close packed layers are parallel ----- diagonal across one face

74% of the total volume occupied by spheres

CCP -- 2 tetra 1 oct per sphere

AKG - 134

Layers of spheres in CCP

Tetrahedral

Octahedral

Interstices

Ionic structures

AKG - 135

NaCl, CsCl

(Radius ratio rules)

CsCl 8:8

NaCl (Rock Salt)

CaF₂ (Fluorite)

Zinc sulphide structures

Sphalerite

Wurtzite

COVALENT SOLIDS

Edge- shared octahedra

Layers of edge-shared octahedra

4 atoms share 4 octahedra ---Plane 2 atoms unshared (2X) $\rightarrow X_3$

Defects in Solids

INTRINSIC

EXTRINSIC (impurities)

Point defects

Extended defects (ordered defects)

Defect concentration

Na Cl Na Cl N	Na Schottly defect
Cl Na Na O	Cl (Point defect)
Na Cl Na Cl N	Na
Cl Cl Na C	21
Na Cl Na Cl N	Na

Overall stoichiometry unaffected – equal Nos. of + & - defects $\sim 1 \text{ defect}/10^{14} \text{ formula unit}$ G = H - TS

Entropy increases (with defects) Minimum shifts to higher defect Concentration (increase in T)

FRENKEL Defect (Interstitial & occupied)

 ~ 1 defect/10¹⁴ formula unit in NaCl (130°C)

AKG - 138

Estimation of defects

--- Density measurements

TiO Ti : O 1 : 1 $\rho = 4.92$ g/cc (experimental density) a = 4.18Å Mass = 63.88 Z = 4 Mass per unit cell = 63.88 x 4

 $\rho = M/V = 5.81 \text{ g/cm}^{-3}$ Which is greater than measured ρ Vacancies present

- Conductivity measurements

Extrinsic Point defects

As in Si Increase in e⁻ (n-type semiconductor)

Ca in
$$ZrO_2$$
 Y^{3+}
Y in ZrO_2 Zr^{4+}

O²⁻ ion vacancies Ca-stabilised ZrO₂ Y-stabilised ZrO₂ (Solid electrolyte Oxygen ion)

Non-stoichiometry

Wuestite — FeO (nominal composition) \downarrow
 $Fe_{0.89}O \rightarrow Fe_{0.96}O$ TiHx $(1 \le x \le 2)$
 $ZrHx <math>(1.5 < x \le 1.6)$
TiOx $(0.7 \le x < 1.25)$

 $VOx \qquad (0.9 \le x \le 1.2)$

F = C-P+1= 2-2+1 = 1

F (No. of degrees of freedom)

LAYERED SOLIDS

AKG - 142

Negatively charged layers -- cations

Uncharged layers

Ion-Exchange Intercalation Hydrotalcites

Positively charged layers -- anions

INTERCALATION REACTIONS

—Reactions of Solids — General molecule or ion — inserted into a Solid lattice

(No major change in structure of solid)

- 1. Strong Covalent network of atoms
 - remains unchanged
- 2. Vacant sites interconnected
 - \rightarrow Diffusion of Guest species

Layered structures:

Natural — Van der Waals interaction between layers — interlayer space — empty lattice sites

Charged compounds — weak electrostatic force — interlayer sites — partially or completely filled with

INTERCALATION of 'K' in Graphite

AKG - 144

Sodalite cage (β – cage)

6 - & 4 – membered rings

Building Blocks for other Zeolites

Joining 4, 6 or 8 membered rings to other rings

Zeolite A

Sodalite cages

Linked by 4 – membered rings

Faujasite – Six membered linker

Properties of Zeolites :

1. Absorption of small molecules (size and shape selective).

Zeolite A – water/ **not** ethanol.

More Al^{+3} / Si^{+4} ratio \longrightarrow More cation

Zeolite A (1:1) - Better absorption of hydrophiles

Hydrophobic Zeolite (high Si⁺⁴ content) –

Absorbs non-polar, benzene etc.

2. Ion – Exchange (Wide application)

Na – Zeolite A + $\frac{1}{2}$ Ca⁺² – Ca_{0.5} Zeolite A + Na⁺

(Removes hardness of water Water softening Radioactive Sr⁺² / Cs⁺ removal)

3. Catalysis : H – Zeolites (Acidic derivatives)

- Rearrangements / Dehydration (Isomerization)
- ✤ Shape selective catalysis Example . CH₃-C₆H₅-CH₃

The zeolite, ZSM -5 has the molecular formula, Na₃Al₃Si₉₃O₁₉₂.

ZSM -5 Na₃Al₃Si₉₃O₁₉₂ \equiv Na₃(AlO₂)₃(SiO₂)₉₃, Al :Si = 1: 31 ratio

synthesis is carried out in the presence of [(n-Propyl)₄N]OH as template

31 Na₂SiO₃ + A1(OH)₃
$$\xrightarrow{(nPr)_4NOH}$$
 Zeolite ZSM-5
100-200 °C
followed by heating
at 500 °C

TRANSITION METAL OXIDES

AKG – 14 5

Rock Salt Structure (NaCl-type)

TiO NiO (First row transition metal oxides)

ReO₃

ReO₆ octahedra; corner connected

Perovskite Structure

 (ABO_3)

A - 12 coordinated B - 6 coordinated

 $\begin{array}{c} BaTiO_{3}\\ CaTiO_{3}\\ LaMnO_{3} \end{array}$

BO₆ octahedra; (T. metal ion - B)

Valence band

materialBand gap (eV)C (diamond)6NaCl9Si1Ge0.7GaAs1.4

Insulators (High band gap)

Semi-conductors (Metals partially filled bands)

300K

```
Copper: 10^7 Ohm<sup>-1</sup> cm<sup>-1</sup>
Doped silicon (n or p) : 10^2 Ohm<sup>-1</sup> cm<sup>-1</sup>
Silicon : 10^{-7} Ohm<sup>-1</sup> cm<sup>-1</sup>
Diamond : 10^{-9} Ohm<sup>-1</sup> cm<sup>-1</sup>
Nylon : 10^{-9} Ohm<sup>-1</sup> cm<sup>-1</sup>
Mica : 10<sup>-11</sup> Ohm<sup>-1</sup> cm<sup>-1</sup>
PVC : 10^{-13} Ohm^{-1} cm^{-1}
```

Metal

Resistivity

Insulator

Metals/ Semiconductors/ Insulators

SUPERCONDUCTIVITY

Kammerlingh Onnes 1911 (Nobel 1)

Temperature (K)

Ideal Superconductors

Zero Electrical Resistance (Perfect Conductor) Zero Magnetic Induction (Perfect Diamagnet)

Macroscopic quantum phenomena

Superconductivityelectrical resistanceSuperfluidityviscosity

100 years of superconductivity

APPLICATIONS OF SUPERCONDUCTORS

1. Medical Industry

MRI Exploits the high magnetic fields expelled by superconducting wires for medical applications

2. Transportation Industry

Superconductor coils create strong magnetic fields that produce the effect of levitation 500 miles per hour / small consumption of energy

3. Electric Power Industry

HTS power cables can carry two to ten times more power in equally or smaller sized cables

Applications of Inorganic Solids

LiMn₂O₄ Spinel Battery material LaNi₅ Hydrogen storage material PbTe Thermoelectric

Zeolite Catalysts Mol. sieves

Cu_{1-X}S (spintronics)

ZrW₂O₈ (0.3K to 1050K)

Strong isotropic thermal expansion from 20 to 425K.

➢ NTE is based on the transverse thermal motion of oxygen in M-O-M linkages.

Some polyhedra corners are linkage free

Network of corner-sharing $ZrO_{6/2}$ octahedra and $WO_{4/2}$ tetrahedra.

A. W. Sleight et al. J Solid State Chem, (2003)

Can Solid Breathe???

Nanoporous iron(III) carboxylate (MIL-88)

Exhibits almost a reversible doubling (85%) of its cell volume while fully retaining its openframework topology.

Atomic displacements larger than 4 Å are observed when water or various alcohols are adsorbed in the porous structure.

b а 9.26Å 11.18Å 13.87Å Contracted open forms as-synthesized

the porous structure. Displacive transition occurs during the swelling phenomenon (X-ray thermodiffractometry).

G. Ferey et al. JACS (2005)